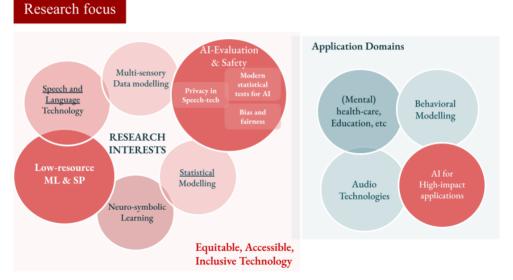
(Bio)-markers and AI in Voice Disorders (Parkinson's Disease): Opportunities and Challenges

Sneha Das


Department of applied Mathematics and Computer Science, Technical University of Denmark (DTU)

DTU Compute

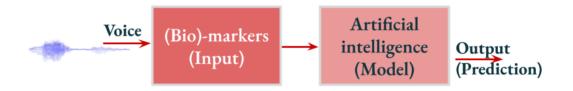
Department of Applied Mathematics and Computer Science

About me

Outline

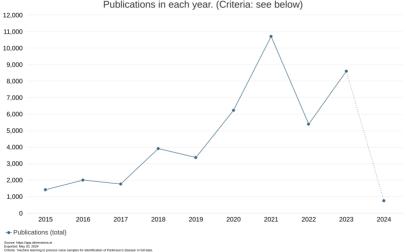
DTU

- Biomarkers in Voice Disorders
- Opportunities
- Challenges
- Our investigation (Work in progress)


Voice Disorders in Parkinson's Disease

- Common voice disorders in PD: hypophonia, dysarthria
- Symptoms: reduced volume, monotone speech, imprecise articulation
- Impact on quality of life

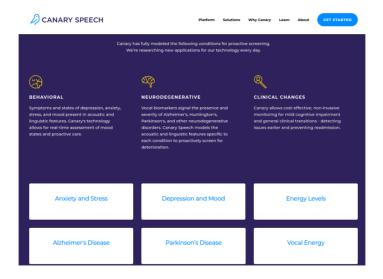
Biomarkers in Voice Disorders Acoustic Biomarkers (Non-invasive marker)



- Fundamental frequency (F0)
- Jitter and shimmer
- Harmonics-to-noise ratio (HNR)
- Formant frequencies

Opportunities Opportunities

- Early and accurate diagnosis
- Personalized treatment plans
- Continuous monitoring and telehealth applications
- Enhanced research capabilities


Opportunities Academic outcome

Publications in each year. (Criteria: see below)

© 2024 Digital Science and Research Solutions Inc. All rights reserved, Non-commercial redistribution / external re-use of this work is permitted subject to appropriate acknowledgement. This work is sourced from Dimensions® at www.dimensions.ai.

Opportunities Translation into real-world products

 nature medicine
 PERSPECTIVE

 https://doi.org/10.1038/s41591-019-0548-6

Corrected: Author Correction

Do no harm: a roadmap for responsible machine learning for health care

Jenna Wiens^{1,20*}, Suchi Saria^{2,3,4,20}, Mark Sendak^{10,5}, Marzyeh Ghassemi^{6,78}, Vincent X. Liu⁹, Finale Doshi-Velez¹⁰, Kenneth Jung¹¹, Katherine Heller^{12,13}, David Kale¹⁴, Mohammed Saeed¹⁵, Pilar N. Ossorio¹⁶, Sonoo Thadaney-Israni¹⁷ and Anna Goldenberg^{6,8,18,19,20*}

Biases, inflated statistical strength, inappropriate model evaluation, lack of reproducibility.

Our investigation (Work in progress) Our work

Challenges (Eg: Medical imaging) \rightarrow Assessment in Voice domain \rightarrow Recommendations for AI in voice disorders.

Evaluation, validation and testing of AI for voice biomarker discovery and detection of voice disorders (Parkinson's): Towards clinical level standards for use of AI in voice disorders. Mette, Vitus, Sneha

The Royal Society of Medicine

LITERATURE SEARCH

"Voice Parameters in Parkinson's Disease"

Prepared by The Royal Society of Medicine Library for

Dr M Pedersen

22 August 2023 DTU Templates 20.5.2024

Our investigation (Work in progress) Machine-learning and Deep-learning Techniques

Al in Voice Disorder Diagnosis:

- Machine learning (ML) and deep learning (DL) techniques
- Benefits of AI: accuracy, scalability, and efficiency

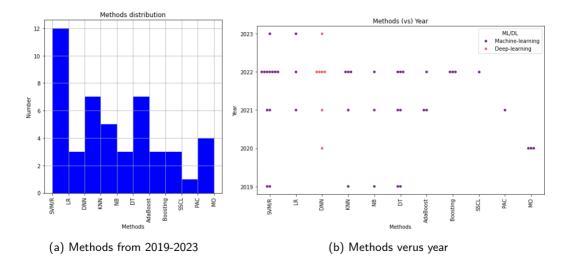
Machine-learning

- Supervised learning: classification and regression
- Common algorithms: support vector machines (SVMs), decision trees
- Feature extraction and selection

Deep-learning

- Convolutional Neural Networks (CNNs) for feature extraction
- Recurrent Neural Networks (RNNs) for sequential data
- Applications in voice analysis

Our investigation (Work in progress)

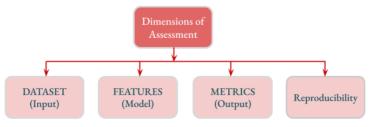

Machine-learning and Deep-learning Techniques

	Authors	Year	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
1	Costantini	2023	SVM	LR	CNN							
2	Lim, Wee	2022	SVM	KNN	NB	LR	DT	RF	AdaBoost	GBM	LightGBM	DNN
3	Dao, Son V	2022	SVM	KNN	DT	LightGB						
4	Bao, Guido	2022	SVM	KNN	SSCL							
5	Pah, Nemu	2022	SVM									
6	Yu, Qian e	2022	SVM									
7	Suppa, An	2022	SVM	FF-NN								
8	Rajeswari,	2022	SVM	CNN	LSTM							
9	Rajasekar,	2021	SVM	KNN	NB	DT	RF	AdaBoost				
10	Gaballah,	2021	LR	SVR								
11	Jain, Anub	2021	CRNN	PAC								
12	Park, J.E. e	2020	DNN									
13	Altay, Elif V	2020	NICGAR	QAR-CIP-N	MOPNAR							
14	Viswanath	2021	AdaBoost									
15	Morello, A	2020										
16	Viswanath	2019	SVM									
17	Sheibani, F	2019	SVM	KNN	NB	DT						
18	Manor, Y. e	2024										
19	Arora, Sido	2019	RF									

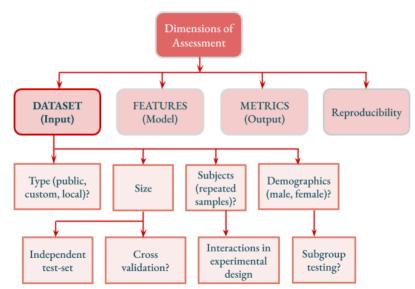
DTU

Our investigation (Work in progress) Machine-learning and Deep-learning Techniques

14 DTU Compute

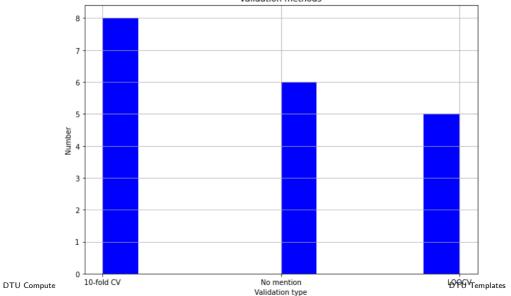

www.nature.com/npidigitalmed

npj digital medicine


REVIEW ARTICLE OPEN (Check for updates) Machine learning for medical imaging: methodological failures and recommendations for the future

Gaël Varoquaux^{1,2,3 ⋈} and Veronika Cheplygina[™]

Our investigation (Work in progress) Dataset assessment



Our investigation (Work in progress) Model-validation

	Authors	2019-2023	C1	C2	C4	Final_validation
1	Costantini, Giovanni et al.	Artificial Intelligence-Base	Binary, mu	Iticlass	10-fold Cro	10-fold CV
2	Lim, Wee Shin et al.	An integrated biometric vo	AdaBoost	best valida	10-fold cro	10-fold CV
3	Dao, Son V T et al.	An Analysis of Vocal Feat	ures for Pa	NA	NA	No mention
4	Bao, Guidong et al.	Classification of Dysphoni	10-fold		10-fold Cro	10-fold CV
5	Pah, Nemuel D. et al.	Phonemes based detection	"leave-one	e-out"	"leave-one	LOOCV
6	Yu, Qian et al.	Parkinson's disease patier	10-fold		10-fold Cro	10-fold CV
7	Suppa, Antonio et al.	Voice in Parkinson's Disea	10-fold		10-fold Cro	10-fold CV
8	Rajeswari, Sreeja Sasidhai	Prediction of Parkinson's	10-fold		10-fold Cro	10-fold CV
9	Rajasekar, S.J.S et al.	Park-Al-an Al based tool f	"leave-one	e-out"	"leave-one	LOOCV
10	Gaballah, Amr et al.	Improved Estimation of Pa	arkinsonian	NA	NA	No mention
11	Jain, Anubhav et al.	Voice Analysis to Different	"leave-one	e-out"	"leave-one	LOOCV
12	Park, J.E. et al.	Say "AH~": Vocal Analysi	"leave-one	e-out"	LOSO (Le	LOOCV
13	Altay, Elif Varol et al.	Association analysis of Pa	rkinson dis	NA	NA	No mention
14	Viswanathan, Rekha et al.	Estimation of Parkinson's	disease se	NA	NA	No mention
15	Morello, Aline Nunes Da O	Dysphonia and Dysarthria	in People	NA	NA	No mention
16	Viswanathan, Rekha et al.	Complexity measures of v	"leave-one	e-out"	"leave-one	LOOCV
17	Sheibani, Razieh et al.	An ensemble method for o	10-fold		10-fold Cro	10-fold CV
18	Manor, Y. et al.	Machine learning classifie	rs and subj	NA	NA	No mention
19	Arora, Siddharth et al.	Developing a large scale	10-fold		10-fold Cro	10-fold CV

Our investigation (Work in progress) Model-validation

17

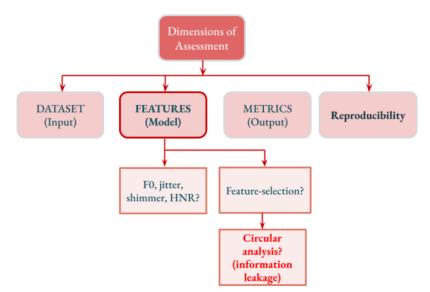
Validation methods

Our investigation (Work in progress) Dataset-type

Original Report

Current Practices in Voice Data Collection and Limitations to Voice AI Research: A National Survey

Emily Evangelista MS, Rohan Kale BSc, Desiree McCutcheon BA, Anais Rameau MD, MPhil, MS, Alexander Gelbard MD, Maria Powell PhD, Michael Johns MD, Anthony Law MD \dots See all authors $\,$ $\,$ $\,$

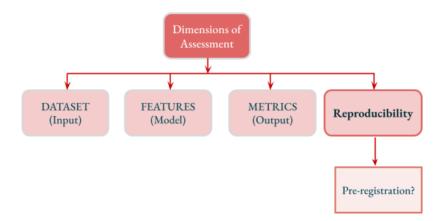

Our investigation (Work in progress) Dataset-type

_

	Authors		
1	Costantini, Giovanni et al.	Voice Analysis	custom-made dataset
2	Lim, Wee Shin et al.	sustained vowels	local dataset (Telephone)
3	Dao, Son V T et al.	NA	Public Speech dataset
4	Bao, Guidong et al.	sustained vowels	own data of normal speech
5	Pah, Nemuel D. et al.	sustained vowels	PC-GITA dataset
6	Yu, Qian et al.	sustained vowels	Local dataset
7	Suppa, Antonio et al.	sustained vowel	Local dataset
8	Rajeswari, Sreeja Sasidharan et al.	sustained vowel	UCI ML dataset
9	Rajasekar, S.J.S et al.	NA	A range of voice measures
10	Gaballah, Amr et al.	sustained vowels	Local dataset
11	Jain, Anubhav et al.	sustained vowels	Local dataset
12	Park, J.E. et al.	sustained vowel	Local dataset
13	Altay, Elif Varol et al.	NA	Local dataset
14	Viswanathan, Rekha et al.	sustained vowels	Local dataset
15	Morello, Aline Nunes Da Cruz et al.	sustained vowel	local dataset
16	Viswanathan, Rekha et al.	sustained vowels	Local dataset
17	Sheibani, Razieh et al.	NA	external dataset
18	Manor, Y. et al.	sustained vowels	Local dataset
19	Arora, Siddharth et al.	NA	external dataset

Our investigation (Work in progress) Features

Our investigation (Work in progress)


Features

	Authors	amount (features)	F0, jitter, shimmer
1	Costantini, Giovanni et al.	453	F0, jitter, shimmer
2	Lim, Wee Shin et al.	2	F0 (SD)
3	Dao, Son V T et al.	7	F0, jitter, shimmer
4	Bao, Guidong et al.	NA	NA
5	Pah, Nemuel D. et al.	9	F0 (SD), jitter, shimmer
6	Yu, Qian et al.	27	F0, jitter
7	Suppa, Antonio et al.	NA	F0, shimmer
8	Rajeswari, Sreeja Sasidharan et al.	7	jitter,shimmer
9	Rajasekar, S.J.S et al.	7	F0,jitter, shimmer
10	Gaballah, Amr et al.	3	NA
11	Jain, Anubhav et al.	4	F0, jitter, shimmer
12	Park, J.E. et al.	2	NA
13	Altay, Elif Varol et al.	NA	NA
14	Viswanathan, Rekha et al.	6	NA
15	Morello, Aline Nunes Da Cruz et al.	1	NA
16	Viswanathan, Rekha et al.	3	NA
17	Sheibani, Razieh et al.	5	shimmer
18	Manor, Y. et al.	NA	FO
19	Arora, Siddharth et al.		F0, jitter,shimmer

DTU

Our investigation (Work in progress) Reproducibility

Questions, Comments?