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WristAngel: Research for Intervention and Management of OCD

* Progression and severity of disorder.

* Improve efficiency in CIB (Coding Interactive Behavior)
x Identify and predict impending OCD events.

x Aid in delivering cognitive behavioral therapy to patients.

x Provide useful interventions for management.
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Audio (Speech) in OCD Management

Audio (Speech) signal
i ‘1

+How it is said (Paralinguistic) +What is said (Semantics)
*Entrainment +OCD-diagnosis -Behavioral coding
+OCD-Severity *Effectiveness of treatment +Aid therapy
\

Vocal signals for OCD
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Clinical audio signal
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Speech preprocessing

J Conversations

i s |

VAD (Voice Activity

@ Pre-processing: Conversations — i . Detection) ;
SpeeCh segments. H 'q'é J ‘Speech/Non-speech’ 1

: g i

@® Manual pre-processing: resource ' = '
intensive i =< Diarization i

. 5 .

. o .

. . : 4 :

© Approx. 13 minutes /per minute : B j ‘Who speaks where’ :
of annotation — 260 individual | £ |
hours for annotating 10 minute i Segment speech ;
long audio conversation for 120 ; L |
audio samples. | ‘ ‘ |
O Popular approach: ML i :
re-trained models pre-processing. i Segments . :

P pre-p g ! (Clignician) Segments (Child) !

Figure: ML pre-processing pipeline.
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Speech pre-processing
Challenges:

® Performance difference between
clinicians and children.

® Errors (variance of error) higher for
children in patient group.

® Correlation between error and
OCD-severity score!!!

False negative rates over groups
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B Child b
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Figure 1: Speech tasks

(A) Speech (C) Speech

recording Diarization

(E) Speech
Emotion
Recognition
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({"‘ 2a () Non-speech (] Patient Ikke si godt.

Acquisition of raw
) signal

Objective Who is talking?
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Automatic Speech Recognition and Transcriptions

® Clinical documentation

® Screening, diagnosis, management.
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Automatic Speech Recognition and Transcriptions

@ State-of-the-art Models — English + Adults
@ State-of-the-model for Danish — Alvenir

© Challenges:

® Transcribe speech from children in Danish
® Clinical conversations between clinician and child.
® Do we have data?
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Baseline and Wav2vec Model

Raw audo i il
- Masking (only during

h'unnﬂ)
- Feature ?OSt' s oons Transformer —
AR S| Extractor Sy projection Encoder *

Layer

Embeddings
R Contractive Loss Conte: i
Quantizer ‘ q re mﬁm S F_|na!
‘ (7 projection
Orﬂywedd.arhg training

10 DTU Compute NLP for Clinical conversations 6.3.2023



)
—
[

i

What to do when no data?

Data-augmentation
To aid in generalisation

® Gain change
® Reverberation
® Background noise
® pitch and duration modification
To aid in transfer to children
® Formant-shift
® Pitch modification

® Duration modification
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Data augmentation

Pitch shlp‘hna
Duration changes
shifting off

(optional)
Formants

e
**|Pata augmentation
to match children
voices

Data
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to make dataset Vi
more generic. ‘
___ g

Pitch sifting
Duration changes
Apply Gain
Simulating room reverberation
\ add background noise

For each batch
perform i3 of the
ist of augmentation
with probabiity 0.6
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output:
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Data augmentation

1.2
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Augmentation-type

® Testing on Alvenir + Plunkett
e Catastrophic forgetting — Not acceptable (!)

13 DTU Compute NLP for Clinical conversations

=]
e
=

i

6.3.2023



)
—
(=

i

How to avoid Catastrophic forgetting?

® Weight freezing
® Acoustic variability
® Pronunciation variability

® Elastic weight consolidation: L(¢) = L(6) + . 2F(0; — 92,1')2

7
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Low error at task B

) Low error of task A

no penalhy
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Results
Performance of the best model!
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[1] Garofalaki. M, Speech and natural language processing for clinical in-the-wild data 2023.
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Affective-states from speech1’275v6

® Entrainment

Applications:

® \/ocalization

® Behavioral coding

[1] S. Das et al, Towards Transferable Speech Emotion Representation: On loss functions for cross-lingual
latent representations, ICASSP 2022.

[2] S. Das et al, Continuous Metric Learning For Transferable Speech Emotion Recognition and Embedding
Across Low-resource Languages, NLDL 2022.

[5] S. Das et al, Zero-shot Cross-lingual Speech Emotion Recognition: A Study of Loss Functions and
Feature Importance, ISCA SPSC Symposium 2022.

[6] Clemmensen et al, Associations between OCD severity and vocal features in children and adolescents: A

statistical and machine learning analysis plan, JMIR Protocols.
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Audio-features — (Simple!) Emotion-recognition

® Input-features: descriptive features of speech features (fo, tonality, intonation, etc) -features

17

R88*! — Support vector machine (SVM) [Das, S, et al. 2021]
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Transferability: What variable to condition on?

Emotion class (discrete) or dimensional model (continuous)?

Transferable feature gt
cmbedding

| ) iR
Autoencoder (DAE, VAE) =
£'I'ut-.ul JCIh--\-

Emotion analysis from
speech for children from
clinical populations,

[mEmni

y
Categorical ety st . . .
= t Dimensional emotion model
emaotion model P i}
(Classes) (Activation, valence)
“lasses , ‘
- . - Viskon L. Consistent over languages, in contrast 10 emodion
g e class labels
2 Allows to model emotion classes that does not exist
in training dataset.
Al :
ompute or Clinical conversations
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Universal emotion representation -
Input Features Computational model : Output == Activation
: Dataset = [EMOCAP
PITCH ; High.nqi:v?gi?)gi. "
Bottlencck Output-layer : 2 3
z e R hz ' :
TONE i : 115
N Y
7 &1 ; £ 0
J] SIS .g_? 2
. Lot | :
- W; e R1O2 H ' -1
. W, € R2x10 i !
W, e Ro® i ! ik VT
: Wy & R Z = ReLU(W z), i=[0.1.2]U[35 ' -2 Low activation
T =Wrz, i=[34U[67] ! %
FO : =2 0 2
: Dim 1
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Summary

@ Speech-processing in psychiatry and psychology — accelerate and aid

@ Challenges:

® Models are sensitive to language, age...
® |ack of resources (data, labels)

© How to adapt ASR modelled on adults to children with above challenges?

® Augmentation
® Continual learning — Elastic weight consolidation.

@ Performance on adults maintained
@ Performance on children improved by — 80%, 5%

@ (Large!) room to improve.
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Thankyou!

Email: sned@dtu.dk; Twitter: @dassneh
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