

Fundamental Frequency Model for Postfiltering at Low Bitrates in a Transform-Domain Speech and Audio Codec

Sneha Das¹, Tom Bäckström¹, Guillaume Fuchs²

¹Department of Signal Processing and Acoustics, Aalto University, Finland

²Fraunhofer IIS, Germany

20.10.2020

Motivation

- Speech coding \rightarrow Enables speech transmission \rightarrow Optimize resource consumption for transmission + transmitted speech quality.
- Postfilters → Improve signal quality at decoder.
- Conventional postfilters → (a) Processing at both encoder and decoder, (b) Additional transmitted bits, (c) Dependent on other codec functional blocks.
- $lue{}$ Alternate approach ightarrow Include source models at the decoder.
- This work → Low-complexity postfilter operating at the decoder side, which includes speech fundamental frequency models.

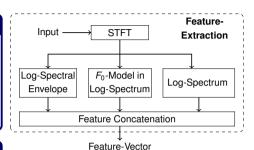
METHODOLOGY

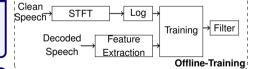
Signal Model

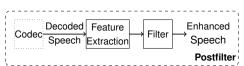
- $lue{}$ Speech ightarrow Glottal excitation filtered by Vocal tract response.
- Filtering in linear domain \rightarrow Multiplicative \Longrightarrow Additive in log-domain \rightarrow $\log |\mathbf{s}| = \mathbf{x}_{\mathbf{F_0}} + \mathbf{x}_{\mathbf{env}}, \, \mathbf{x}_{\mathbf{F_0}} \rightarrow$ excitation, $\mathbf{x}_{\mathbf{env}} \rightarrow$ spectral envelope.
- We model the decoded signal as y as follows: $\log |y| = x_{F_0} + x_{env} + x_n$.
- Goal: find $\mathbf{A} = [\mathbf{A}_{\mathbf{F_0}}, \mathbf{A}_{\mathbf{env}}, \mathbf{A}_{\mathbf{n}}, \mathbf{b}]^T \rightarrow \hat{\mathbf{s}} = \mathbf{A}_{\mathbf{F_0}} \mathbf{x}_{\mathbf{F_0}} + \mathbf{A}_{\mathbf{env}} \mathbf{x}_{\mathbf{env}} + \mathbf{A}_{\mathbf{n}} \mathbf{x}_{\mathbf{n}}.$
- Optimization: minimize mean square error $\to \mathbf{A} = (\mathbf{D}\mathbf{D}^T)^{-1}\mathbf{D}\mathbf{S}^T$, $\mathbf{D} \to \text{feature}$ matrix.

System Overview

Features


- Spectral envelope, F_0 -model, Magnitude spectrum \rightarrow Log-domain.
- F_0 -model \rightarrow largest cepstral coefficient i, and adjacent coefficients i + 1, i 1


Offline-training


Models in both frequency domain and perceptual domain investigated.

Postfilter

Features computed from decoded signal.

Computational Complexity

Stage	Process	WMOPS
	Cepstrum (log-magnitude)	0.3099
Features	linear $ ightarrow$ log-magnitude	0.3099
Filtering	Matrix multiplication: Ad	17.163
	Magnitude→Complex	0.0119
Postprocessing	log-magnitude→linear	0.2980
Total		17.88

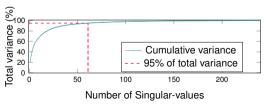
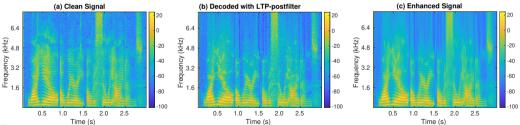


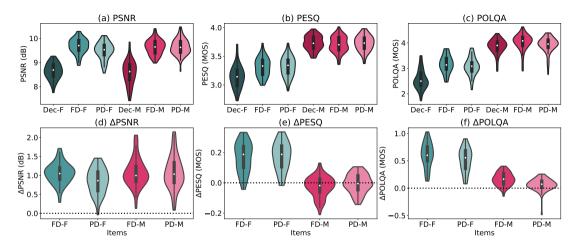
Figure: Plot of the cumulative variance over the singular values of filter A.

EVALUATION & RESULTS

Evaluation

- TIMIT dataset used for training and testing.
- \blacksquare Filter trained over 1000 speech samples \to 340 female samples \to randomly chosen from training set.
- Gender specific filters in presented results.
- Codec → Similar to EVS in TCX mode used.
- Proposed postfilter applied on top of LTP-postfilter.

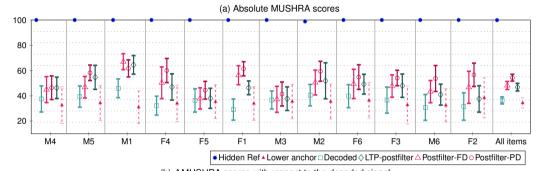


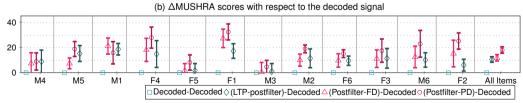

Figure: Spectrograms of a test sample: (a) Clean signal, (b) Decoded signal with LTP-postfilter, (c) Enhanced signal.

Objective Evaluation

Specifics

- 118 test samples (decoded speech) → 40 female, 78 male samples; randomly selected from TIMIT.
- Objective Measures:
 - **1.** PSNR and Δ PSNR \rightarrow signal-to-noise-ratio in the perceptual domain.
 - 2. PESQ and ΔPESQ
 - POLQA and ΔPOLQA
- Evaluation results presented based on gender.


Figure: Distribution of the objective-measures via summary statistics and density trace of the absolute and Δ scores of the PSNR, PESQ, POLQA, for female (F) and male (M) samples in the Frequency domain (FD) and Perceptual domain (PD).


Subjective Evaluation: MUSHRA listening test

Specifics

- MUSHRA test with 10 listeners.
- 12 test items (6 female + 6 male) → 6 conditions → Lower-anchor, Hidden Reference, Decoded, LTP postfilter, Postfilter-FD, Postfilter-PD.
- 4 samples randomly chosen; 4 samples which showed the highest POLQA scores, 4 samples with least POLQA scores.

Conclusion

- Speech coding → speech transmission.
- Postfilter for enhancement in speech and audio coding → incorporates information on harmonic structure.
- PSNR, PESQ, POLQA → positive improvement.
- Objective scores higher for females \rightarrow accuracy of F_0 -model.
- MUSHRA points higher for perceptual domain modelling.
- Postfilter successful in removing artefacts due to discontinuities.

