

Postfiltering Using Log-Magnitude Spectrum for Speech and Audio Coding

Sneha Das¹ **and Tom Bäckström**¹

¹*Department of Signal Processing and Acoustics, Aalto University, Finland*

September, 2018

Introduction

- **Performance of advanced frequency domain codecs deteriorate** at low-bitrates.
	- \blacksquare Fewer bits for encoding, thus regions with lower energy tend to be quantized to zero.
	- Speech signals have lower energy at higher frequencies.
	- **Large parts of speech quantized to zero.**
	- Yields spectral holes, rendering a perceptually distorted and muffled characteristic to the signal.

Current Solutions

- **Pre- and Post-filtering methods used to mitigate this problem.** Examples are:
	- Formant enhancement
	- Bass postfilter
	- Noise filling
- **Some methods are applied at decoder only and does not require** any changes to the core structure of the codec, while others need to be implemented both at the encoder and decoder.
- Transmission of additional side information.
- Current solutions focus mainly on solving the manifestation of problem.

Features of proposed method

- Post-filtering method, thus applied only at the decoder, without the need for any changes to the codec structure.
- Incorporates inherent speech correlations to estimate the lost information (focusing on the cause of the problem).
- \blacksquare Operates using (i) quantized signal as the noisy observation, (ii) statistical models trained offline.
- Transmission of additional side information *not* required.

Speech Magnitude-Spectrum Models Distribution

- Spectral magnitude envelope contains formant information.
- Magnitude Spectrum of speech is an exponential distribution, concentrated at low values.
	- **Modeling gives rise to numerical** inaccuracies.
	- \blacksquare Difficult to ensure positivity of estimates, using generic mathematical operations.
- *Log-magnitude spectrum:* redistribution of magnitude axis (non-linear operation of $logarithm) \rightarrow approx.$ Gaussian distribution.

Speech Magnitude-Spectrum Models Context neighborhood

- Speech is a slowly varying signal→temporal correlation.
- Context neighborhood: surrounding frequency bins

- C_0 currently under consideration.
- Context size $= 10$ is depicted.
- Bins chosen based on distance from bin under consideration.
- Only previously estimated bin information included in context.

Speech Magnitude-Spectrum Models Training Overview

- Time-domain signal transformed to frequency domain.
- Pre-processing step includes whitening.
- Signal transformed to the perceptual domain using perceptual weighting, in accordance to CELP.
- Context-vectors of the desired size is extracted and covariance computed.

Problem Formulation I

Maximizing the likelihood of current sample, given the noisy observation and the previous estimates.

$$
\hat{x} = \arg\max_{x} \quad P(X|\vec{X}_c = \hat{\vec{x}}_c) \quad \text{subject to,} \quad Q \in [l, u]
$$

Edge-problem: the estimates are biased towards the limits of the quantization-bin.

[Postfiltering Using Log-Magnitude Spectrum for Speech and](#page-0-0) Audio Coding September, 201[8](#page-0-0)

Problem Formulation II

Expected likelihood:

$$
\hat{x} = \arg E[P(X|\vec{X}_c = \hat{\vec{x}}_c)] \text{ subject to.}
$$
\n(1)

Truncated Gaussian model employed for analytical solution. $\overline{}$

[Postfiltering Using Log-Magnitude Spectrum for Speech and](#page-0-0) Audio Coding September, 201[8](#page-0-0)

Algorithm 1 Estimation of signal from quantized observation

Require: Quantized signal *Y*, speech-models *C*

1: **function** ESTIMATION(Y, C) 2: **for** $frame = 1 : N$ **do** 3: **for** *bin* = 1 : *Length*(*Y*(*frame*)) **do** 4: $\mu_{\textit{up}}, \sigma_{\textit{up}} \leftarrow \textit{UpdateStatistics}(C, \hat{X}_{\textit{prev}})$ 5: *pdf* \leftarrow *TruncateGaussian*($\mu_{\mu\nu}$, $\sigma_{\mu\nu}$, *l*(*bin*), *u*(*bin*)) 6: $\hat{X} \leftarrow$ *Expectation(pdf)*

Systems Overview

Figure: Systems block diagram

[Postfiltering Using Log-Magnitude Spectrum for Speech and](#page-0-0) Audio Coding

11/16

Experimental Setup

- **Effect of contextual statistical models investigated in terms** (a) magnitude spectrum (b) spectral envelope:
	- Cepstral coefficients used to model and estimate spectral envelope.
- Experimental setup: TIMIT database used for training and testing.
	- **Training: 250 speech samples randomly chosen from the training** set.
	- Testing: 10 speech samples randomly chosen from the test set, coded at 12 different bitrates between 9.6-128 kbps
	- Postfilter with context size $\in \{1, 4, 8, 10, 14, 20, 40\}$ applied to each test case.

Results Plots I: Magnitude spectrum

- Low input pSNR: improvements in range 1.5-2.2 dB.
- Higher input pSNR: improvements in range 0.2-1.2 dB.
- Improvement in quality is large between context of size 1 and 4.

Results Plots II: Spectral Envelope

- Low input SNR: improvements in range 1.25-2.75 dB.
- Higher input SNR: improvements in range 0.5-2.25 dB.
- Similar trend between spectrum and envelope indicate that Gaussian distributions pre-dominantly incorporate spectral envelope information.

Results Plots III: Correlation between true and estimated speech

- Scatter plots represent the correlation between true, estimated and quantized speech in bins quantized to *zero*.
- Correlation between estimated and true values improve with increase in context size.

Conclusions

- We investigated the use of contextual information inherent in speech for the reduction of Quantization-noise.
- The proposed method employs statistical models at the decoder to estimate spectral magnitude, without the transmission of any additional information.
- Results demonstrate an average 1.5 dB improvement for inputs in the range of $4 - 18$ dB and improvement prominent in bins quantized to zero.
- Besides improving pSNR for coding, the method provides spectral magnitude estimates for noise filling algorithms.

