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Introduction

Speech signals→dominated by low-energy components (high
frequencies).

Encoding at low bitrates: Sparse signal (low-energy parts
quantized to zero).

Signal distorted, noise referred to as musical noise.
Pre- and post-processing methods employed to mitigate this
problem.

some need to be implemented both at encoder and decoder, thus
modifying core codec structure.
some methods need to transmit additional side information.
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Proposed method

Speech is slowly varying = high temporal correlation.

Speech temporal and frequency correlation show noise-reduction
potential.

Speech codecs avoid transmitting information with temporal
dependency; so not sufficiently studied.
In this work, we propose:

a postfilter using speech models, applied at the decoder only to
reduce quantization noise.
Models incorporate the complex spectrum characteristics.
Postfilter optimal in MMSE sense.
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Quantized signal and Quantization noise
Characteristics
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(a) Quantized output

−0.1 0 0.1

(b) Quantization error

Quantized signal is sparse =⇒ distribution shifts away from true
signal distribution.

Quantization noise highly correlated to the original signal.
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Quantized signal and Quantization noise
Dithering
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(c) Randomized quantization
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(d) Randomization error

Randomization: type of dithering.

Dithering preserves the
quantized signal distribution.

Also lends the quantization noise
more uncorrelated characteristic.

(i) Clean speech
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(ii) Quantized speech
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(iii) Quantized speech (randomization)
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Speech Modeling
Context Neighborhood

Context: surrounding
frequency bins.

(a) Context neighborhood
of size L = 10.

(b) Recursive integration
of context information ,
similar to IIR filtering.
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Speech Modeling
Problem Formulation

Signal model: Yk ,t = Xk ,t + Vk ,t .

We assume speech, X , and noise, V , are zero-mean Gaussian
random variables.

We maximize the likelihood of the clean speech estimate, x̂,
given the observation Yk ,t and the context x̂L, such that
Yk ,t = X̂k ,t + V̂k ,t (constraint)

Thus, the Optimal Wiener filter

x̂ = ΛX (ΛX + ΛN)−1y, (1)

ΛX ,ΛN ∈ C(L+1)×(L+1), L: context length.
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Speech Modeling
Normalized covariance and gain modeling

Speech signals undergo large fluctuations in gain and spectral
envelope structure.

We remove the effect of this gain using normalization during
offline modeling, to obtain the static speech covariance models,
ΛX .

The gain, γ, is computed during noise attenuation.

Thus, the estimate of the current sample is obtained employing
both ΛX and γ, Λ̂X = γΛX , Λ̂X is the dynamic covariance model.
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Systems Overview
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Figure: Block diagram of the proposed system.
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Results
Objective evaluation I

Experimental setup
Training:

50 speech signals randomly chosen from TIMIT test dataset.
We resample the signals to 12.8 kHz and apply Sine window on
frames of 20 ms with 50% overlap and transform to the frequency
domain.
Modeling applied in the perceptual domain.

Testing:
105 speech samples randomly chosen and noisy signals
generated by adding perceptually weighted noise to obtain signals
in pSNR range 0-20 dB, 5 samples for each pSNR level.
We tested postfilters using context sizes from 1-14.
Ideally enhanced signal (known noise energy) was used as
reference.
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Results
Objective evaluation II

Evaluation results:
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Results
Subjective evaluation I

Experimental setup
MUSHRA test:

Test comprised of 6 items and 8 test conditions.
Experts and non-experts in the age group 20-43 were included in
the test.
15 listeners (9 out of total 24 listeners were discarded after failure
to identify hidden reference).
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Results II
Subjective evaluation I

Test set:
6 random sentences from the TIMIT test dataset.
Noisy sentences with additive perceptual noise at SNR=2, 5 and
8 dB..
Male and female noisy cases were tested for each pSNR.
Conditions: hidden reference, lower-anchor, noisy, ideal
enhancement, conventional Wiener filter, proposed postfiltering
with context sizes 1, 6, 14.
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Results
Subjective evaluation II

Evaluation results:
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Conclusions

Presented a time-frequency filter for attenuation of quantization
noise.

The complex speech correlations are modeled offline and used
at the decoder only, thus eliminating the chances of error
propagation from transmission loss.

Objective tests indicate an improvement of 6 dB in best-case
scenario, and 2 dB in a typical application.

Subjective results show an improvement of 10-30 MUSHRA
points.
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